Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
One Health ; 16: 100509, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37363233

RESUMEN

West Nile virus (WNV), a mosquito-borne zoonosis, has emerged as a disease of public health concern in Europe. Recent outbreaks have been attributed to suitable climatic conditions for its vectors favoring transmission. However, to date, projections of the risk for WNV expansion under climate change scenarios is lacking. Here, we estimate the WNV-outbreaks risk for a set of climate change and socioeconomic scenarios. We delineate the potential risk-areas and estimate the growth in the population at risk (PAR). We used supervised machine learning classifier, XGBoost, to estimate the WNV-outbreak risk using an ensemble climate model and multi-scenario approach. The model was trained by collating climatic, socioeconomic, and reported WNV-infections data (2010-22) and the out-of-sample results (1950-2009, 2023-99) were validated using a novel Confidence-Based Performance Estimation (CBPE) method. Projections of area specific outbreak risk trends, and corresponding population at risk were estimated and compared across scenarios. Our results show up to 5-fold increase in West Nile virus (WNV) risk for 2040-60 in Europe, depending on geographical region and climate scenario, compared to 2000-20. The proportion of disease-reported European land areas could increase from 15% to 23-30%, putting 161 to 244 million people at risk.  Across scenarios, Western Europe appears to be facing the largest increase in the outbreak risk of WNV. The increase in the risk is not linear but undergoes periods of sharp changes governed by climatic thresholds associated with ideal conditions for WNV vectors. The increased risk will require a targeted public health response to manage the expansion of WNV with climate change in Europe.

3.
Lancet Reg Health Eur ; 17: 100370, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35373173

RESUMEN

Background: In Europe, the frequency, intensity, and geographic range of West Nile virus (WNV)-outbreaks have increased over the past decade, with a 7.2-fold increase in 2018 compared to 2017, and a markedly expanded geographic area compared to 2010. The reasons for this increase and range expansion remain largely unknown due to the complexity of the transmission pathways and underlying disease drivers. In a first, we use advanced artificial intelligence to disentangle the contribution of eco-climatic drivers to WNV-outbreaks across Europe using decade-long (2010-2019) data at high spatial resolution. Methods: We use a high-performance machine learning classifier, XGBoost (eXtreme gradient boosting) combined with state-of-the-art XAI (eXplainable artificial intelligence) methodology to describe the predictive ability and contribution of different drivers of the emergence and transmission of WNV-outbreaks in Europe, respectively. Findings: Our model, trained on 2010-2017 data achieved an AUC (area under the receiver operating characteristic curve) score of 0.97 and 0.93 when tested with 2018 and 2019 data, respectively, showing a high discriminatory power to classify a WNV-endemic area. Overall, positive summer/spring temperatures anomalies, lower water availability index (NDWI), and drier winter conditions were found to be the main determinants of WNV-outbreaks across Europe. The climate trends of the preceding year in combination with eco-climatic predictors of the first half of the year provided a robust predictive ability of the entire transmission season ahead of time. For the extraordinary 2018 outbreak year, relatively higher spring temperatures and the abundance of Culex mosquitoes were the strongest predictors, in addition to past climatic trends. Interpretation: Our AI-based framework can be deployed to trigger rapid and timely alerts for active surveillance and vector control measures in order to intercept an imminent WNV-outbreak in Europe. Funding: The work was partially funded by the Swedish Research Council FORMAS for the project ARBOPREVENT (grant agreement 2018-05973).

4.
Lancet Planet Health ; 5(7): e404-e414, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34245711

RESUMEN

BACKGROUND: Mosquito-borne diseases are expanding their range, and re-emerging in areas where they had subsided for decades. The extent to which climate change influences the transmission suitability and population at risk of mosquito-borne diseases across different altitudes and population densities has not been investigated. The aim of this study was to quantify the extent to which climate change will influence the length of the transmission season and estimate the population at risk of mosquito-borne diseases in the future, given different population densities across an altitudinal gradient. METHODS: Using a multi-model multi-scenario framework, we estimated changes in the length of the transmission season and global population at risk of malaria and dengue for different altitudes and population densities for the period 1951-99. We generated projections from six mosquito-borne disease models, driven by four global circulation models, using four representative concentration pathways, and three shared socioeconomic pathways. FINDINGS: We show that malaria suitability will increase by 1·6 additional months (mean 0·5, SE 0·03) in tropical highlands in the African region, the Eastern Mediterranean region, and the region of the Americas. Dengue suitability will increase in lowlands in the Western Pacific region and the Eastern Mediterranean region by 4·0 additional months (mean 1·7, SE 0·2). Increases in the climatic suitability of both diseases will be greater in rural areas than in urban areas. The epidemic belt for both diseases will expand towards temperate areas. The population at risk of both diseases might increase by up to 4·7 additional billion people by 2070 relative to 1970-99, particularly in lowlands and urban areas. INTERPRETATION: Rising global mean temperature will increase the climatic suitability of both diseases particularly in already endemic areas. The predicted expansion towards higher altitudes and temperate regions suggests that outbreaks can occur in areas where people might be immunologically naive and public health systems unprepared. The population at risk of malaria and dengue will be higher in densely populated urban areas in the WHO African region, South-East Asia region, and the region of the Americas, although we did not account for urban-heat island effects, which can further alter the risk of disease transmission. FUNDING: UK Space Agency, Royal Society, UK National Institute for Health Research, and Swedish Research Council.


Asunto(s)
Calor , Malaria , Animales , Ciudades , Cambio Climático , Brotes de Enfermedades , Humanos , Malaria/epidemiología
5.
Front Public Health ; 9: 648545, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111706

RESUMEN

At the outset of an epidemic, available case data typically underestimate the total number of infections due to insufficient testing, potentially hampering public responses. Here, we present a method for statistically estimating the true number of cases with confidence intervals from the reported number of deaths and estimates of the infection fatality ratio; assuming that the time from infection to death follows a known distribution. While the method is applicable to any epidemic with a significant mortality rate, we exemplify the method by applying it to COVID-19. Our findings indicate that the number of unreported COVID-19 infections in March 2020 was likely to be at least one order of magnitude higher than the reported cases, with the degree of underestimation among the countries considered being particularly high in the United Kingdom.


Asunto(s)
COVID-19 , Epidemias , Humanos , SARS-CoV-2 , Reino Unido/epidemiología
7.
Int J Epidemiol ; 49(5): 1443-1453, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32954400

RESUMEN

BACKGROUND: While the COVID-19 outbreak in China now appears suppressed, Europe and the USA have become the epicentres, both reporting many more deaths than China. Responding to the pandemic, Sweden has taken a different approach aiming to mitigate, not suppress, community transmission, by using physical distancing without lockdowns. Here we contrast the consequences of different responses to COVID-19 within Sweden, the resulting demand for care, intensive care, the death tolls and the associated direct healthcare related costs. METHODS: We used an age-stratified health-care demand extended SEIR (susceptible, exposed, infectious, recovered) compartmental model for all municipalities in Sweden, and a radiation model for describing inter-municipality mobility. The model was calibrated against data from municipalities in the Stockholm healthcare region. RESULTS: Our scenario with moderate to strong physical distancing describes well the observed health demand and deaths in Sweden up to the end of May 2020. In this scenario, the intensive care unit (ICU) demand reaches the pre-pandemic maximum capacity just above 500 beds. In the counterfactual scenario, the ICU demand is estimated to reach ∼20 times higher than the pre-pandemic ICU capacity. The different scenarios show quite different death tolls up to 1 September, ranging from 5000 to 41 000, excluding deaths potentially caused by ICU shortage. Additionally, our statistical analysis of all causes excess mortality indicates that the number of deaths attributable to COVID-19 could be increased by 40% (95% confidence interval: 0.24, 0.57). CONCLUSION: The results of this study highlight the impact of different combinations of non-pharmaceutical interventions, especially moderate physical distancing in combination with more effective isolation of infectious individuals, on reducing deaths, health demands and lowering healthcare costs. In less effective mitigation scenarios, the demand on ICU beds would rapidly exceed capacity, showing the tight interconnection between the healthcare demand and physical distancing in the society. These findings have relevance for Swedish policy and response to the COVID-19 pandemic and illustrate the importance of maintaining the level of physical distancing for a longer period beyond the study period to suppress or mitigate the impacts from the pandemic.


Asunto(s)
COVID-19 , Control de Enfermedades Transmisibles , Costos de la Atención en Salud/tendencias , Necesidades y Demandas de Servicios de Salud , Mortalidad/tendencias , COVID-19/economía , COVID-19/epidemiología , COVID-19/prevención & control , Control de Enfermedades Transmisibles/métodos , Control de Enfermedades Transmisibles/estadística & datos numéricos , Monitoreo Epidemiológico , Necesidades y Demandas de Servicios de Salud/organización & administración , Necesidades y Demandas de Servicios de Salud/tendencias , Humanos , Modelos Teóricos , Aislamiento de Pacientes , Distanciamiento Físico , SARS-CoV-2 , Suecia/epidemiología
8.
Geohealth ; 4(8): e2020GH000253, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32864539

RESUMEN

The 2018 outbreak of dengue in the French overseas department of Réunion was unprecedented in size and spread across the island. This research focuses on the cause of the outbreak, asserting that climate played a large role in the proliferation of the Aedes albopictus mosquitoes, which transmitted the disease, and led to the dengue outbreak in early 2018. A stage-structured model was run using observed temperature and rainfall data to simulate the life cycle and abundance of the Ae. albopictus mosquito. Further, the model was forced with bias-corrected subseasonal forecasts to determine if the event could have been forecast up to 4 weeks in advance. With unseasonably warm temperatures remaining above 25°C, along with large tropical-cyclone-related rainfall events accumulating 10-15 mm per event, the modeled Ae. albopictus mosquito abundance did not decrease during the second half of 2017, contrary to the normal behavior, likely contributing to the large dengue outbreak in early 2018. Although subseasonal forecasts of rainfall for the December-January period in Réunion are skillful up to 4 weeks in advance, the outbreak could only have been forecast 2 weeks in advance, which along with seasonal forecast information could have provided enough time to enhance preparedness measures. Our research demonstrates the potential of using state-of-the-art subseasonal climate forecasts to produce actionable subseasonal dengue predictions. To the best of the authors' knowledge, this is the first time subseasonal forecasts have been used this way.

9.
Expert Rev Anti Infect Ther ; 18(12): 1187-1193, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32741233

RESUMEN

INTRODUCTION: We are witnessing an alarming increase in the burden and range of mosquito-borne arboviral diseases. The transmission dynamics of arboviral diseases is highly sensitive to climate and weather and is further affected by non-climatic factors such as human mobility, urbanization, and disease control. As evidence also suggests, climate-driven changes in species interactions may trigger evolutionary responses in both vectors and pathogens with important consequences for disease transmission patterns. AREAS COVERED: Focusing on dengue and chikungunya, we review the current knowledge and challenges in our understanding of disease risk in a rapidly changing climate. We identify the most critical research gaps that limit the predictive skill of arbovirus risk models and the development of early warning systems, and conclude by highlighting the potentially important research directions to stimulate progress in this field. EXPERT OPINION: Future studies that aim to predict the risk of arboviral diseases need to consider the interactions between climate modes at different timescales, the effects of the many non-climatic drivers, as well as the potential for climate-driven adaptation and evolution in vectors and pathogens. An important outcome of such studies would be an enhanced ability to promulgate early warning information, initiate adequate response, and enhance preparedness capacity.


Asunto(s)
Fiebre Chikungunya/transmisión , Cambio Climático , Dengue/transmisión , Animales , Fiebre Chikungunya/epidemiología , Dengue/epidemiología , Humanos , Modelos Teóricos , Mosquitos Vectores , Riesgo
11.
Euro Surveill ; 25(13)2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32265005

RESUMEN

Several Italian towns are under lockdown to contain the COVID-19 outbreak. The level of transmission reduction required for physical distancing interventions to mitigate the epidemic is a crucial question. We show that very high adherence to community quarantine (total stay-home policy) and a small household size is necessary for curbing the outbreak in a locked-down town. The larger the household size and amount of time in the public, the longer the lockdown period needed.


Asunto(s)
Infecciones por Coronavirus/prevención & control , Coronavirus , Brotes de Enfermedades/prevención & control , Transmisión de Enfermedad Infecciosa/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , Cuarentena , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Humanos , Italia/epidemiología , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Neumonía Viral/virología , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/prevención & control , Síndrome Respiratorio Agudo Grave/virología , Factores de Tiempo
12.
Proc Biol Sci ; 285(1893): 20182603, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30963885

RESUMEN

Niche expansion is attained by adaptations in two generalized phenotypical traits-niche position and niche width. This gives room for a wide range of conceptual ways of niche filling. The niche variation hypothesis reduces the range by predicting that expansion occurs by increasing variation in niche position, which has been debated on empirical and theoretical grounds as also other options seem possible. Here, we propose a general theory of niche expansion. We review empirical data and show with an eco-evolutionary model how resource diversity and a trade-off in resource acquisition steer niche evolution consistent with observations. We show that the range can be reduced to a discrete set of two orthogonal ways of niche filling, through (1) strict phenotypical differentiation in niche position or (2) strict individual generalization. When individual generalization is costly, niche expansion undergoes a shift from (2) to (1) at a point where the resource diversity becomes sufficiently large. Otherwise, niche expansion always follows (2), consistent with earlier results. We show that this either-or response can operate at both evolutionary and short-term time scales. This reduces the principles of niche expansion under environmental change to a notion of orthogonality, dictated by resource diversity and a resource-acquisition trade-off.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Ecosistema , Animales , Invertebrados , Modelos Biológicos , Plantas , Vertebrados
13.
Proc Biol Sci ; 282(1801): 20142121, 2015 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-25589602

RESUMEN

We derive functional responses under the assumption that predators and prey are engaged in a space race in which prey avoid patches with many predators and predators avoid patches with few or no prey. The resulting functional response models have a simple structure and include functions describing how the emigration of prey and predators depend on interspecific densities. As such, they provide a link between dispersal behaviours and community dynamics. The derived functional response is general but is here modelled in accordance with empirically documented emigration responses. We find that the prey emigration response to predators has stabilizing effects similar to that of the DeAngelis-Beddington functional response, and that the predator emigration response to prey has destabilizing effects similar to that of the Holling type II response. A stability criterion describing the net effect of the two emigration responses on a Lotka-Volterra predator-prey system is presented. The winner of the space race (i.e. whether predators or prey are favoured) is determined by the relationship between the slopes of the species' emigration responses. It is predicted that predators win the space race in poor habitats, where predator and prey densities are low, and that prey are more successful in richer habitats.


Asunto(s)
Migración Animal , Cadena Alimentaria , Conducta Predatoria , Animales , Ecosistema , Modelos Biológicos , Densidad de Población
14.
J Theor Biol ; 342: 93-106, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24060621

RESUMEN

In this paper we elucidate how small-scale movements, such as those associated with searching for food and avoiding predators, affect the stability of predator-prey dynamics. We investigate an individual-based Lotka-Volterra model with density-dependent movement, in which the predator and prey populations live in a very large number of coupled patches. The rates at which individuals leave patches depend on the local densities of heterospecifics, giving rise to one reaction norm for each of the two species. Movement rates are assumed to be much faster than demographics rates. A spatial structure of predators and prey emerges which affects the global population dynamics. We derive a criterion which reveals how demographic stability depends on the relationships between the per capita covariance and densities of predators and prey. Specifically, we establish that a positive relationship with prey density and a negative relationship with predator density tend to be stabilizing. On a more mechanistic level we show how these relationships are linked to the movement reaction norms of predators and prey. Numerical results show that these findings hold both for local and global movements, i.e., both when migration is biased towards neighbouring patches and when all patches are reached with equal probability.


Asunto(s)
Migración Animal/fisiología , Conducta Predatoria/fisiología , Animales , Densidad de Población , Especificidad de la Especie
15.
Ecol Lett ; 14(12): 1288-99, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21985428

RESUMEN

Predator-prey interactions are a primary structuring force vital to the resilience of marine communities and sustainability of the world's oceans. Human influences on marine ecosystems mediate changes in species interactions. This generality is evinced by the cascading effects of overharvesting top predators on the structure and function of marine ecosystems. It follows that ecological forecasting, ecosystem management, and marine spatial planning require a better understanding of food web relationships. Characterising and scaling predator-prey interactions for use in tactical and strategic tools (i.e. multi-species management and ecosystem models) are paramount in this effort. Here, we explore what issues are involved and must be considered to advance the use of predator-prey theory in the context of marine fisheries science. We address pertinent contemporary ecological issues including (1) the approaches and complexities of evaluating predator responses in marine systems; (2) the 'scaling up' of predator-prey interactions to the population, community, and ecosystem level; (3) the role of predator-prey theory in contemporary fisheries and ecosystem modelling approaches; and (4) directions for the future. Our intent is to point out needed research directions that will improve our understanding of predator-prey interactions in the context of the sustainable marine fisheries and ecosystem management.


Asunto(s)
Ecología/métodos , Explotaciones Pesqueras , Peces , Modelos Biológicos , Conducta Predatoria , Animales , Ecosistema , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...